Monitoring and control of binary gas mixtures from solid phase MOCVD sources using an acoustic sensor

L. Henn-Lecordier, G. Rubloff, J. Kidder
Institute for Systems Research and Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD, 20742

http://www.isr.umd.edu/~rubloff
Improved precursor delivery: ESH perspectives

- Increasing variety of new precursors for advanced materials
 - Si VLSI (e.g., low and high K dielectrics), wide bandgap SC (GaN)
- Productivity and ESH metrics often affected
 - Low chemical stability, low vapor pressure liquid or solid sources, high toxicity …
- ESH benefits from improved precursor delivery:
 - Greater flexibility in chemical process design
 - Wider variety of precursors meet manufacturability constraints
 - Use of Advanced Process control
 - APC is key to higher yield and equipment effectiveness
 - Higher productivity minimizes ESH metrics such as materials utilization
Issues with delivery of solid MOCVD precursors

- **Solid MOCVD sources used in compound semiconductors**
 - e.g. TMI in III/V GaN devices, Cp₂Mg for p doping
- **Dosimetry issues from use of MO solid sources**
 - Low vapor pressure: TMI (1.75 Torr), Cp₂Mg (0.05 Torr) at 25°C
 - Require heated source and feed lines
 - Instability of metal-organic feed rate due to:
 - Aging effects (change of crystal surface area, material redistribution, contamination)
 - Interaction feed line / MO vapor → condensation
 - Incomplete saturation at high flows

- Reproducibility issues affect device performance
- Only small fraction of the source is used before being replaced

⇒ Need for real-time monitoring and control of the MO precursor concentration
Measurement of resonant frequency F

- If binary gas mixture (precursor, carrier)
- If F_2, carrier gas resonant frequency, is known
 $\Rightarrow F/F_2 = f$ (Precursor Mole Fraction)
- High mass ratio \Rightarrow high sensitivity

$$F = \frac{C}{2L} \quad \text{with} \quad C = \sqrt{\frac{\gamma_{\text{avg}} RT}{M_{\text{avg}}}}$$

C: speed of sound, L: chamber length
T: gas temperature
γ_{avg}: average specific heat ratio
M_{avg}: average molecular weight

<table>
<thead>
<tr>
<th>Gas</th>
<th>Mol. weight (g/mol)</th>
<th>Res. Freq. (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2</td>
<td>2</td>
<td>4000</td>
</tr>
<tr>
<td>Cp_2Mg</td>
<td>154.5</td>
<td>440</td>
</tr>
</tbody>
</table>
Solid source gas delivery

Carrier gas (H₂) flown into temperature controlled sublimator to be saturated by source vapor pressure

Heated lines

MFC

H₂ carrier gas

50 g. MOCVD solid source

H₂ dilution

MFC

acoustic transducer

Pressure control valve

Exhaust

Recommended temperatures

<table>
<thead>
<tr>
<th>Gas</th>
<th>Bath T (°C)</th>
<th>VP (Torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMI</td>
<td>25</td>
<td>2.54</td>
</tr>
<tr>
<td>Cp₂Mg</td>
<td>40</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Monitoring of TMI and Cp₂Mg concentration by acoustic sensing
Effect of pressure variations

- \(P > 150 \) Torr, composition measurements vary accordingly with \(VP / P \)
- At \(P < 50 \) Torr, measurement failure due to insufficient transfer of acoustic energy
- Between 50 and 150 Torr
 - Higher concentration achievable but sensor response non-linearity vs. \(1/P \)

➢ Varying pressure is not recommended to adjust composition due to effects of pressure change on acoustic measurements
Ideal operating environment

• **Requirements in reactor**
 – Tune and maintain:
 - constant MO precursor concentration
 - constant gas throughput (H2 carrier + precursor) to reactor

• **Requirements in delivery system**
 – Fixed pressure to minimize sensor drift (and potential low pressure failure)
 – Controllable precursor concentration to compensate for change in source vapor pressure (temperature or aging effects)
Effect of H$_2$ flow rates

MO composition can not be reproducibly adjusted by varying carrier gas flow

• Σ (carrier + dilution) = constant throughput
• Composition adjusted by varying H$_2$ dilution flow rate

3 E-5 mol% Standard Deviation

H$_2$ carrier flow / H$_2$ dilution flow (sccm)
P = 300 Torr
Control of Cp$_2$Mg concentration

With Cp$_2$Mg, measurement Standard Deviation = 3 E-5 mol%

- accuracy better than 1 ppm with 75 / 1 mass ratio
- can detect Cp$_2$Mg concentration change resulting from 0.1 % variation in dilution flow (under 100 sccm total flow)

⇒ Excellent prognosis for real-time control of MO feed rate
Effect of temperature drift in open loop configuration

- \(\text{Cp}_2\text{Mg} \) bath temperature varied from 40\(^\circ\) to 32\(^\circ\)C
 - Vapor pressure down from 0.16 to 0.08 Torr
 - "Simulates" aging effects

- Open loop configuration:
 - dilution flow = 100 sccm
 - sublimator flow = 50 sccm
 - \(\text{Cp}_2\text{Mg} \) composition down from 0.01 to 0.005 mol%
Closed loop concentration control

H₂ dilution and carrier flows corrected to keep composition on target
- Proportional Integral Derivative close loop control
- Primary control variables adjusted every second
Effect of temperature drift on composition in closed loop control

- Source temperature varied from 40 to 32°C
- $\Sigma (H_2 \text{ flows}) = 150$ sccm, $P = 300$ Torr
- Cp_2Mg composition target = 0.01 mol% (0.3 umol/min)
Closed loop control performance

- \((C_{p_2Mg})_{\text{average}} = 0.010009 \text{ mol }\%\)
- \((C_{p_2Mg})_{\text{STD}} = 3.0 \times 10^{-5} \text{ mol }\%\)

\(C_{p_2Mg}\) composition controlled within a 1 % range despite variation of the source vapor pressure from 0.16 to 0.08 Torr.
Closed loop control in presence of short term disturbances

Set On/Off heating elements to generate 3°C temperature oscillations in feed line
Cp$_2$Mg concentration control in presence of disturbances

T(source) = 40°C; T(Feed line) = 50 +/-1.5°C in (a); 60 +/-1.5°C in (b)

- Feedback control results in significant reduction of composition variations in presence of disturbances
- Higher feed line temperature minimizes MO condensation
Use of closed loop control allows reproducible composition profiling with 1 min. response time.
Conclusions

• Acoustic sensing provides very accurate measurements of metal organic concentration obtained from low VP solid source
• Use of closed loop control with acoustic sensing enables stable delivery of low vapor pressure MOCVD solid sources
 – Control of the composition within 1% even at low precursor concentration (e.g., 0.01 mol % with \(\text{Cp}_2\text{Mg} \))
 – Compensate long term drifts due to source aging as well as short term drift due to source variability
• Use of APC on reactant delivery system could significantly increase the tool productivity and reduce the precursor utilization.

Acknowledgement: Carl Gogol & Abdul Wajid (Inficon)