Microfluidic Circuit Fabrication and Packaging for Surface-Controlled Bioprocesses in BioMEMS

T.M. Valentine1,2, J.J. Park1,2, G.W. Rubloff1,2,3, R. Ghodsi1,2,3

1Materials Science and Engineering, UMCP; 2Institute for Systems Research, UMCP; 3Electrical and Computer Engineering, UMCP.

Electrochemical deposition of chitosan

Chitosan and MEMS

Chitosan (polysaccharide)
- Cationic polyelectrolyte (NH3+)
- pH dependent solubility (pH < 6.3)
- Selective deposition
- Rich amine groups (DNA, protein, cell adhesion)
- Good interface material

MEMS technology

Chitosan film deposition

- DC Power Supply
- Chitosan Solution
- pH gradient
- Localized high pH region generated electrochemically due to hydrogen evolution
- Chitosan molecules deproteinate and immobilize at electrode surface
- Electrochemical reaction rate depends on current density

Microfluidic system

- Leak free microfluidics
- Incorporation of electrode structure and integrated optical waveguides
- Reliable exchange of BioMEMS systems through reusable packaging
- Combinatorial analysis with process parameters

Chitosan film

- Hydrogel formation
- Aquous biocompatible environment
- 3D structure (Microfluidic channel, barriers, valves)
- Spatial selectivity (20μm)

Design and image

- Side view of microfluidic system with PDMS gasket on substrate

Chip

- Pyrex® substrate, Kapton® substrate
- SU8 Microfluidic channels (w/d ~500/150 μm)
- Knife edges and PDMS gasket
- Electrodes for surface deposition and biofunctionalization

Packaging

- Polycarbonate packaging material
- Leak free packaging by clamping action
- Clear access for in-situ optical microscopy
- Parallel connection of fluidic and electrical inputs/outputs

Biofunctionalization in microfluidic system

The Idea: Microfluidic Biomolecular Factory

- Bioprocesses controlled by surface functionalization and reactions at specific sites in microfluidic network

Flexible and sequential protein assembly through chemical conjugation to deposited chitosan

- Nucleophilicity of chitosan’s primary amine groups can also be exploited for chemical conjugation of proteins onto electrodeposited chitosan scaffold

Chitosan deposition in microfluidic system

- Chitosan solution
- T% (w/v), pH 5
- Labeled with NHS-fluorescein
- Counter electrode
- Void volume: 1~1.5μm

Packaging test

- Successful leak tight system
- Flow rate: 0.1 mL/min
- Knife edge Channel

Successes

- Chitosan solution
- Deposition conditions
- Flow rate: 1.0 mL/min
- Current density: 6A/m²
- Successful chitosan deposition on working electrode in microfluidic channel
- Estimated thickness: 1~1.5μm
- Closest working electrode has most deposition