Chitosan — a Biomaterial Interface that can be Selectively Deposited onto Micropatterned Surfaces and Conjugated to Sensing Biomolecules

Li-Qun (Cynthia) Wu

Center for Biosystems Research (CBR)
University of Maryland Biotechnology Institute (UMBI)
Recognize Collaborating Team

Dr. Gregory F. Payne
(CBR, UMBI)
Rohan Fernandes

Dr. Reza Ghodssi
(Electrical Engineering, UMCP)
Mark J. Kastantin
Sheng Li
Dr. Anand P. Gadre

Dr. William E. Bentley
(CBR, UMBI)
Hyunmin Yi
David Small

Dr. Gary W. Rubloff
(Materials Engineering, UMCP)
Jung Jin Park
Motivation

INTEGRATING MICROFABRICATION WITH BIOLOGY

Biosensors: Disease Diagnosis, Contaminant Detection & Drug Discovery

Microfabrication: Surface Patterning for Spatial Selectivity

Biology: Molecule Recognition for Biosensing

Challenges: Coupling Labile Biomolecules to Inorganic Surface

Solutions: Exploit Polysaccharide Chitosan as Interface Material
Chitosan: An Interface Material

- Electrochemical Deposition
 - pH-Dependent Electrostatic Behavior
 - pH-Dependent Solubility

\[
\text{Soluble} \quad \leftrightarrow \quad \text{Insoluble} \quad + \quad 2n \ H^+
\]
Electrochemical Deposition of Chitosan

--- Mechanism

1. Proton Consumption Creates Localized pH Gradient

2. pH-Dependent Solubility Allows Chitosan to Deposit on Cathode Surface
Chitosan Deposition is Voltage Programmable & Spatially-Selective

- Patterned Gold Surfaces
- Fluorescently-Labeled Chitosan
- Applied Voltage

Fluorescently-Labeled Chitosan

125 µm
Deposition of Fluorescently-labeled Chitosan

Microscope

Before Dep. After Dep.

Optical

Fluorescence

Magnification 20× Magnification 8×

Chitosan: An Interface Material

- Electrochemical Deposition
 - Voltage- Programmability
 - Spatial Selectivity

- Chemical Modification
 - Reactive with Standard Chemistries
 - High Resolution / Repeatability
Repeatability of Chitosan Deposition & Reaction

Chitosan Deposition

Amine-Reactive Fluorescent Tag

Chitosan: An Interface Material

- **Electrochemical Deposition**
 - Voltage- Programmability
 - Spatial Selectivity

- **Chemical Modification**
 - Reactive with Standard Chemistries
 - High Resolution / Repeatability

- **Bio-functionality**
 - Nucleic Acid (DNA) Coupling
 - Protein Coupling
Surface Activation by Standard Chemistry

Coupling Agent: Glutaraldehyde

Activated Surface

Chitosan

Gold

ssDNA

Protein
Activated Surface

Immobilization & Hybridization of Nucleic Acid (DNA)

The “Chip”
Sensitive, Selective & Repeatable DNA-DNA Hybridization

Target 0.25nmol

Chitosan: An Interface Material

- **Electrochemical Deposition**
 - Voltage- Programmability
 - Spatial Selectivity

- **Chemical Modification**
 - Reactive with Standard Chemistries
 - High Resolution / Repeatability

- **Bio-functionality**
 - Nucleic Acid (DNA) Coupling
 - Molecular Recognition
 - Spatial Resolution
 - Protein Coupling
3-D Structure of Green Fluorescent Protein (GFP)
Immobilization of GFP Protein onto Spatially Templated Chitosan

Results:
Immobilization of GFP Protein in Microfluidic Channel

Dimensions:

Microfluidic Channel: \(3.2\text{mm} \times 50\mu\text{m} \times 100\mu\text{m}\)

Reservoir: \(\phi = 0.8\text{mm}\)
Covalent Immobilization of GFP onto Micro-fluidic Channels

Deposit Chitosan → Activate Chitosan

Couple GFP

Chitosan at the Interface

- **Electrochemical Deposition**
 - Voltage- Programmability
 - Spatial Selectivity

- **Chemical Modification**
 - Reactive with Standard Chemistries
 - High Resolution / Repeatability

- **Bio-functionality**
 - Nucleic Acid (DNA) Coupling
 - Molecular Recognition
 - Spatial Resolution
 - Protein Coupling
 - Retain Protein Structure
 - Microfluidic Environment
Acknowledgements

- Financial support: NSF & USDA
- Small Smart Systems Center (SSSC) at the University of Maryland College Park (UMCP)